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* Intuition of Nonlinear Dimensionality
Reduction(NLDR)

« ISOMAP
« LLE




Principle Comfggéﬁxt ga%g)gA

— Linear projections of greatest variance from the top
eigenvectors of the data covariance matrix

Multidimensional Scaling:MDS

— Low dimensional embedding that best preserves
pairwise distances between data points

Modeling of linear variabilities in high dimensional
data

No local minima

Find linear subspace and cannot deal properly
with data lying on nonlinear manifolds

Problem in PCA and MDS

* Create distortion in local and global geometry
— Map faraway data point to nearby point




Intuition: how does your brain
store these pictures?
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Brain Representation




* Every pixel?
* Or perceptually

Brain Representation

meaningful structure?
— Up-down pose
— Left-right pose
— Lighting direction
So, your brain successfully
reduced the high-
dimensional inputs to an

intrinsically 3-dimensional
manifold!

. 3 features needed

e

Un-daw pose

The computed manifold

L Lighting direction Left—right pose




Model for NLDR

« RN is the observation space

* Y is d-dimensional feature space
« A smooth embedding f: RN 2> Y (N>>d)

Isomap: Algorithm

Step |Name Description
1 Construct Compute matrix D ={d(i,j)}
O(DN?) | neighborhood

graph, G d_(i,j) = Euclidean distance between neighbors
2 Compute Compute matrix D ={d;(i,j)}
O(DN?) | shortest paths

between all dg(i,)) = approx geodesic dist.

pairs
3 Construct d- Apply MDS to D instead of Dy
O(dN?) | dimensional

coordinate

vectors, y,




Sample points

» Altogether there are

20,000 points in the = _..;:-!;';E;*:;?g‘;s;-g._j._: _
“Swiss roll” data set. 1T o

We sample 1000 out - . 5,
of 20,000. { HE. :

Construct neighborhood graph G

K- nearest neighborhood (K=7)

D is 1000 by 1000 (Euclidean) distance matrix of two
neighbors (figure A)




Compute all-points shortest path in G

Now Dy is 1000 by 1000 geodesic distance
matrix of two arbitrary points along the
manifold(figure B)

Use MDS to embed graph in R¢

Find a d-dimensional Euclidean space Y (Figure c)
to minimize the cost function:

E=|xDg — 7(Dy,2




Linear Approach-classical MDS

E=|v(Dg) — 7Dy,

(D) = —%HDZ;H

7(D,)= —%HD&H

D2 =[D?]

H=1-11%
N

min || (D) —7(D, ) ||=min || -0.5H (D - D) H ||*
=min|| X" X -Y"Y|?==mintrace(X" X -Y'Y)?

Theorem: For any squared distance matrix pz ,there
exists of points x;andx, such that 7> =(x —x )(x —x)
> ) ij i J i J

So p:=-x"x

Solution

| | - A -

Y=A1;(2d)V:>Y= Yo Ys v Ya| = \/7:2

| . —
’ - AiVa " awv

Y lies in R9and consists of N points correspondent to the N
original points in input space.




Isomap: Advantages

e Nonlinear

* Globally optimal

+ Still produces globally optimal low-dimensional Euclidean
representation even though input space is highly folded,

twisted, or curved.

* Guarantee asymptotically to recover the true
dimensionality.

[somap: Disadvantages

* Guaranteed asymptotically to recover geometric
structure of nonlinear manifolds

— As N increases, pairwise distances provide better
approximations to geodesics by “hugging surface”
more closely

— Graph discreteness overestimates dy,(i,))

* K must be high to avoid “linear shortcuts” near
regions of high surface curvature

* Mapping novel test images to manifold space




PCA, MD vs ISOMAP
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LLE(Locally Linear Embedding)

* Property
— Preserving the local configurations of nearest neighbours
* LLE
— Local: only neighbours contribute to each reconstruction
— Linear: reconstructions are confined to linear subspace
* Assumption
— Well-sampled data->locally linear patch of the manifold
— d-dimensional manifold->2d neighbors




LLE Algorlthm

» Stepl

Neighborhood
search

— Compute the
neighbours of
each data point

— K nearest
neighbours per
data point

\l G (fRI r bloM @ Select neighbors.

L o
X,
. - -
Q
Do. ] L]
[+] a
@3
[+
Reconstruct
with linear
weights.

e @ Map to embedded coordinates.




LLE Algorithm

LLE \l((ﬂ{llbloM @Selectnelghbors

Step2 . o e
X -
Constrained Least . .
Square Fits 0% @ »
[+] a
— Reconstruction @
Reconstruct
EI'TOI' with linear
weights.

2
EW) = Z Xi— ZJ—WUXJ
i

if not neighbour
Wi =0 bk gko
Invariant to rotations, ;
rescaling, and translatio
22 Wij = 1 of that point and its

neighbour
LLE Algorithm
LLE \l( (ﬂ{IIbIOM @Select neighbors.
» Step3 R -
Eigenvalue Problem ° °
— Reconstruction e S
. L2 @l
S(Y) =3 |Yi= D WyY; R naar
weights.

YW=

i
centred at the origin
- Lywwoa

i

Avoid degenerate
solution




Embedding by LLE
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Corners taces to the corners ot 1ts two dimensional
embedding
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LLE advantages

* Ability to discover nonlinear manifold of
arbitrary dimension

» Non-iterative
* Global optimality
* Few parameters: K, d

* O(DN2) and space efficient due to sparse
matrix

LLE disadvantages

» Requires smooth, non-closed, densely
sampled manifold

* Quality of manifold characterization
dependent on neighborhood choice

» Sensitive to outliers




Comparisons: PCA vs LLE vs

Isomap

» PCA: find embedding coordinate vectors
that minimize distance to all data

* LLE: find embedding coordinate vectors
that best fit local neighborhood
relationships

* ISOMAP: find embedding coordinate
vectors that preserve geodesic shortest
distances




