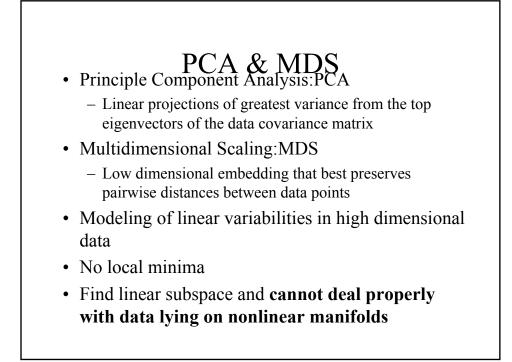
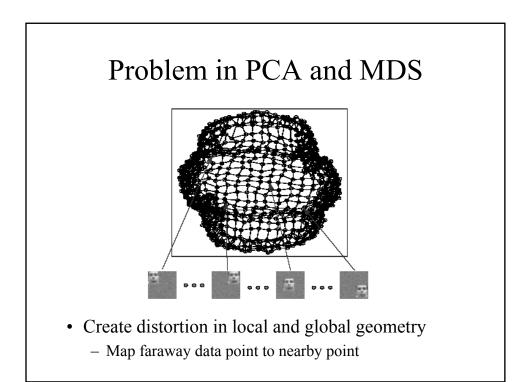
Nonlinear Dimensionality Reduction

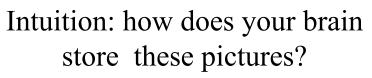
Fall 2005 Ahmed Elgammal Dept of Computer Science Rutgers University

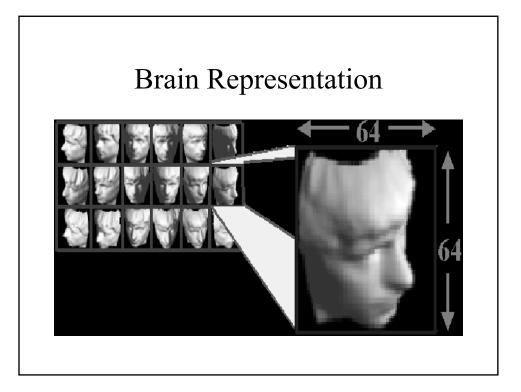
Outline

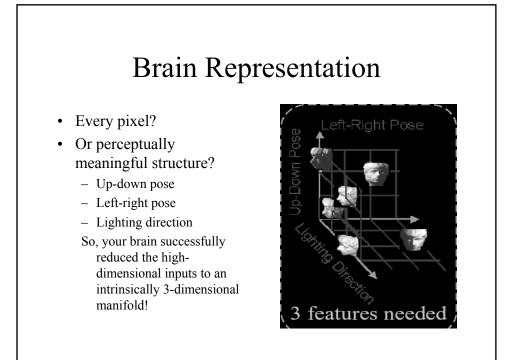
- Intuition of Nonlinear Dimensionality Reduction(NLDR)
- ISOMAP
- LLE

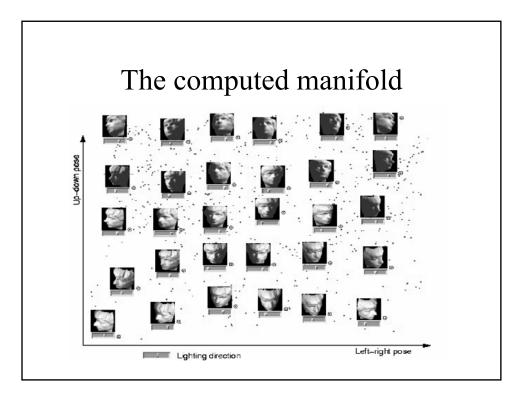








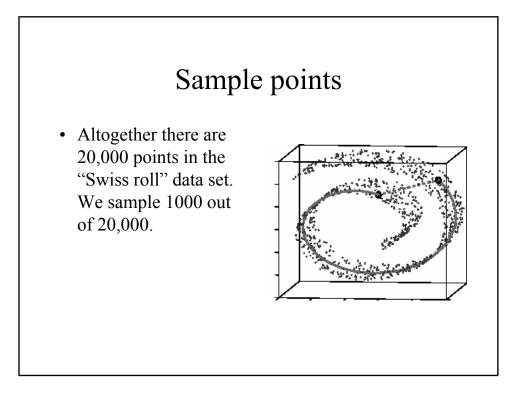


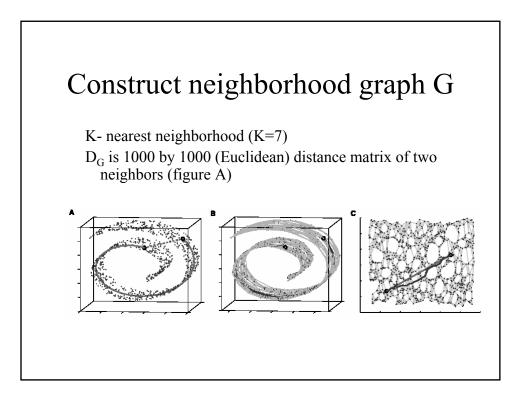


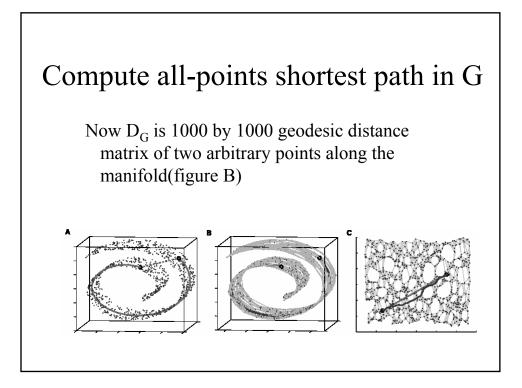
Model for NLDR

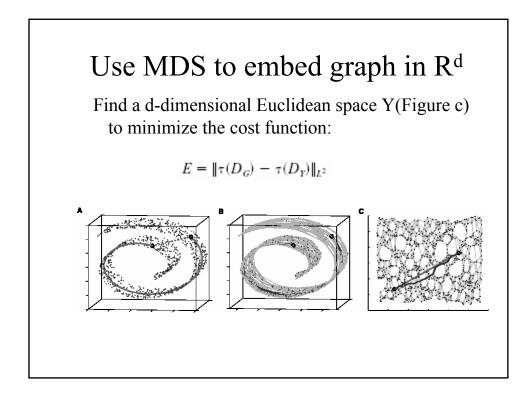
- R^N is the *observation space*
- Y is d-dimensional *feature space*
- A smooth embedding f: $\mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{Y}$ (N>>d)

Isomap: Algorithm		
Step	Name	Description
1 O(DN ²)	Construct neighborhood graph, G	Compute matrix $\mathbf{D}_{G} = \{ \mathbf{d}_{X}(i,j) \}$ $\mathbf{d}_{x}(i,j) = Euclidean distance between neighbors$
2 O(DN ²)	Compute shortest paths between <i>all</i> pairs	Compute matrix $\mathbf{D}_{G} = \{\mathbf{d}_{G}(i,j)\}$ $\mathbf{d}_{G}(i,j) = \text{approx geodesic dist.}$
3 O(dN ²)	Construct d- dimensional coordinate vectors, y _i	Apply MDS to \mathbf{D}_{G} instead of \mathbf{D}_{X}



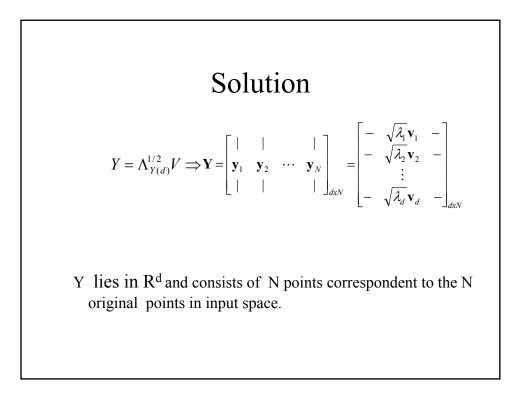






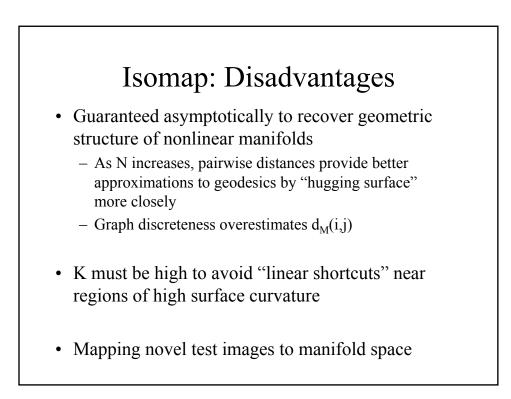
Linear Approach-classical MDS

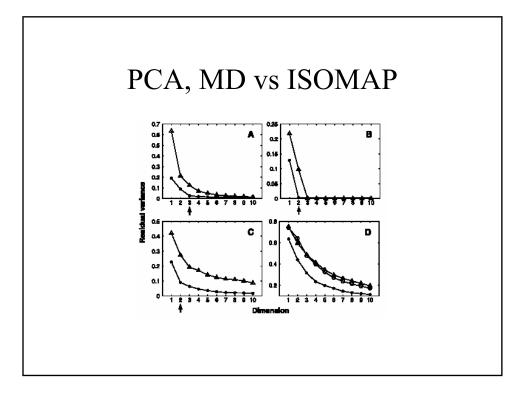
 $E = \|\tau(D_G) - \tau(D_Y)\|_{L^2}$ $\tau(D_G) = -\frac{1}{2}HD_G^2H$ $\tau(D_Y) = -\frac{1}{2}HD_Y^2H$ $D_G^2 = [D_{ij}^2]$ $H = I - \frac{1}{N}\frac{1*1}{}$ min $\|\tau(D_G) - \tau(D_Y)\| = \min \|-0.5H(D_G^2 - D_Y^2)H\|^2$ $= \min \|X^T X - Y^T Y\|^2 == \min trace(X^T X - Y^T Y)^2$ Theorem: For any squared distance matrix D_G^2 , there exists of points x_i and x_j , such that $d_{ij}^2 = (x_i - x_j)'(x_i - x_j)$ So $D_G^2 = X^T X$



Isomap: Advantages

- Nonlinear
- Globally optimal
 - Still produces globally optimal low-dimensional Euclidean representation even though input space is highly folded, twisted, or curved.
- Guarantee asymptotically to recover the true dimensionality.



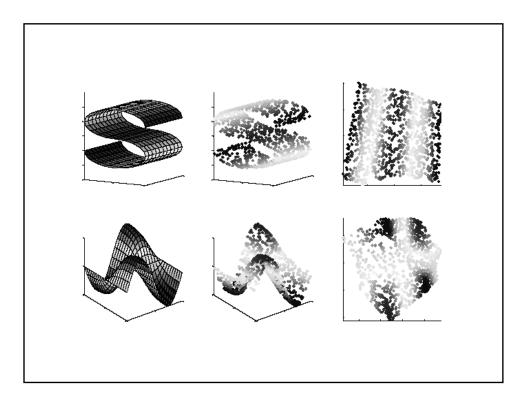


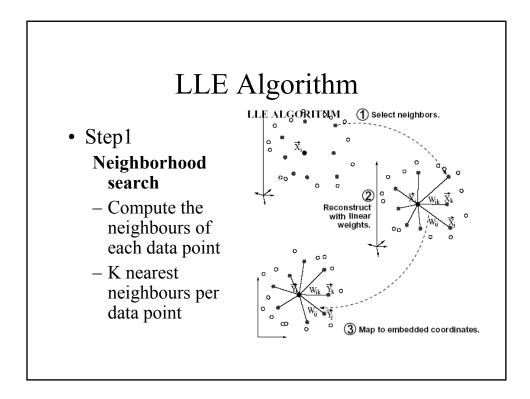
LLE(Locally Linear Embedding)

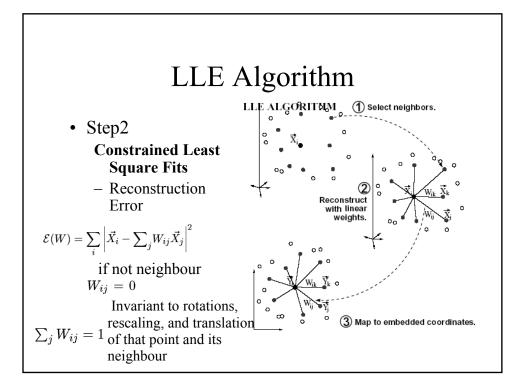
• Property

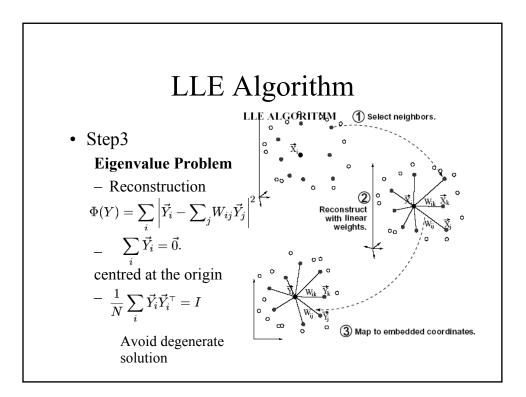
- Preserving the local configurations of nearest neighbours

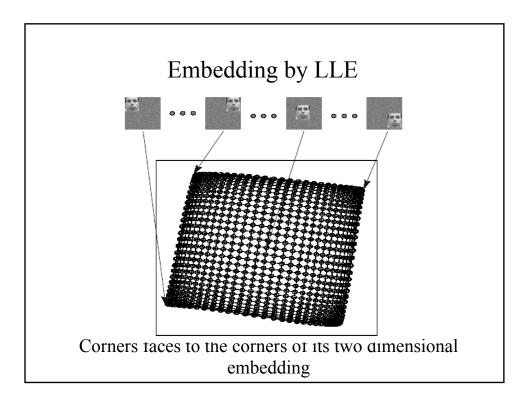
- LLE
 - Local: only neighbours contribute to each reconstruction
 - Linear: reconstructions are confined to linear subspace
- Assumption
 - Well-sampled data->locally linear patch of the manifold
 - d-dimensional manifold->2d neighbors

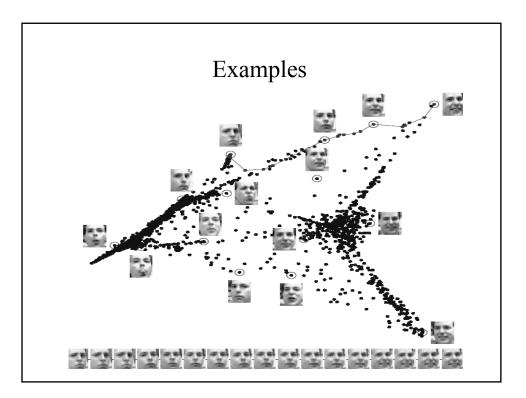


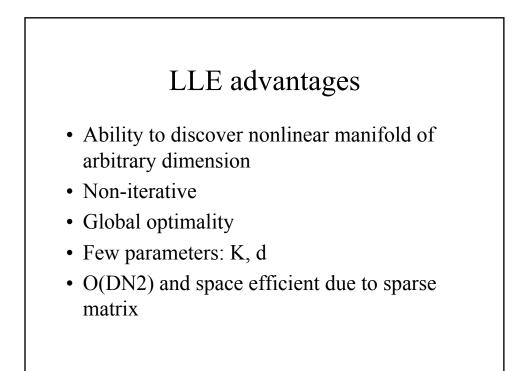














Comparisons: PCA vs LLE vs

Isomap

- PCA: find embedding coordinate vectors that minimize distance to all data
- LLE: find embedding coordinate vectors that best fit local neighborhood relationships
- ISOMAP: find embedding coordinate vectors that preserve geodesic shortest distances